Divisor sum function: sigma(n)
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144, 72, 195, 74, 114, 124, 140, 96, 168, 80, 186, 121, 126, 84, 224, 108, 132, 120, 180, 90, 234, 112, 168, 128, 144, 120, 252, 98, 171, 156
OFFSET
1
COMMENTS
Sum of positive divisors of n
.
PROPERTIES
Multiplicative with a(p^k) = (p^(k+1)-1)/(p-1)
.
FORMULAS
a(n) = Sum_{d|n} d
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q)
, where c_q(n)
is Ramanujan's sum function.
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k))
PROGRAMS
Perl
use ntheory qw(:all);
sub a { divisor_sum(shift) }
PARI/GP
a(n) = sigma(n);
Sidef
func a(n) { sigma(n) }
SEE ALSO
Euler's totient function: G1
Wikipedia, Divisor function.
Weisstein, Eric W. Divisor Function. From MathWorld--A Wolfram Web Resource.