Numbers n such that phi(n) = (sum of digits of n)!
1, 1221, 101600, 112112, 121220, 1310022, 1412010, 1600200, 10071100, 10100350, 10311400, 10612000, 10621000, 11002600, 12130300, 100020080, 102202400, 104111300, 110100530, 113321000, 120020600, 1011041031, 1112011005, 2010003600, 2010232200, 2011012410, 2011110024, 2013030012, 2023030020, 2023210200, 2031011400, 2100710010, 2101140300, 2102050020, 2110110240, 2133012000, 16000132000, 100105041101, 102202041011, 102511020101, 103000314011, 111021340001, 232110023000, 233110101020, 240120002300, 2102001113013, 2200014130011, 3102220000005
OFFSET
1
COMMENTS
Numbers n
such that G1(n) = G3(G4(n)).
PROGRAMS
Perl
use ntheory qw(:all);
my @values;
foreach my $t (1 .. 13) {
my $n = factorial($t);
foreach my $k (inverse_totient($n)) {
if (vecsum(split(//, $k)) == $t) {
push @values, $k;
}
}
}
foreach my $value (sort { $a <=> $b } @values) {
print($value, ", ");
}
Sidef
var values = []
for t in (1..13) {
var n = t!
values += n.inverse_totient.grep { .sumdigits == t }
}
say values.sort.join(", ")