Approximate Equality

Two values can be compared for approximate equality by using the built-in operator , available in ASCII as =~=, which does approximate comparison by rounding both operands at (PREC>>2)-1 decimals. However, by default, Sidef uses a floating-point precision of 192 bits.

``````[
100000000000000.01, 100000000000000.011,
100.01, 100.011,
10000000000000.001 / 10000.0, 1000000000.0000001000,
0.001, 0.0010000001,
0.000000000000000000000101, 0.0,
sqrt(2) * sqrt(2), 2.0,
-sqrt(2) * sqrt(2), -2.0,
sqrt(-2) * sqrt(-2), -2.0,
cbrt(3)**3, 3,
cbrt(-3)**3, -3,
100000000000000003.0, 100000000000000004.0,
3.14159265358979323846, 3.14159265358979324
].each_slice(2, {|a,b|
say ("#{a} ≅ #{b}: ", a ≅ b)
})
``````

Output:

``````100000000000000.01 ≅ 100000000000000.011: false
100.01 ≅ 100.011: false
1000000000.0000001 ≅ 1000000000.0000001: true
0.001 ≅ 0.0010000001: false
0.000000000000000000000101 ≅ 0: false
2 ≅ 2: true
-2 ≅ -2: true
-2 ≅ -2: true
3 ≅ 3: true
-3-7.82914889268316957969274243345625157631318402415e-58i ≅ -3: true
100000000000000003 ≅ 100000000000000004: false
3.14159265358979323846 ≅ 3.14159265358979324: false
``````

The Number n.round(-k) can be used for rounding the number n to k decimal places. A positive argument can be used for rounding before the decimal point.

``````var a = 100000000000000.01
var b = 100000000000000.011

# Rounding at 2 and 3 decimal places, respectively
say (round(a, -2) == round(b, -2))      # true
say (round(a, -3) == round(b, -3))      # false
``````

There is also the built-in approx_cmp(a, b, k) method, which is equivalent with a.round(k) <=> b.round(k).

``````var a = 22/7
var b = Num.pi

say ("22/7 ≅ π at 2 decimals: ", approx_cmp(a, b, -2) == 0)
say ("22/7 ≅ π at 3 decimals: ", approx_cmp(a, b, -3) == 0)
``````

Output:

``````22/7 ≅ π at 2 decimals: true
22/7 ≅ π at 3 decimals: false
``````

Additionally, the rat_approx method can be used for computing a very good rational approximation to a given real value:

``````say (1.33333333.rat_approx == 4/3)   # true
say (zeta(-5).rat_approx == -1/252)  # true
``````

Rational approximations illustrated for substrings of PI:

``````for k in (3..19) {
var r = Str(Num.pi).first(k)
say ("rat_approx(#{r}) = ", Num(r).rat_approx.as_frac)
}
``````

Output:

``````rat_approx(3.1) = 31/10
rat_approx(3.14) = 22/7
rat_approx(3.141) = 245/78
rat_approx(3.1415) = 333/106
rat_approx(3.14159) = 355/113
rat_approx(3.141592) = 355/113
rat_approx(3.1415926) = 86953/27678
rat_approx(3.14159265) = 102928/32763
rat_approx(3.141592653) = 103993/33102
rat_approx(3.1415926535) = 1354394/431117
rat_approx(3.14159265358) = 833719/265381
rat_approx(3.141592653589) = 17925491/5705861
rat_approx(3.1415926535897) = 126312511/40206521
rat_approx(3.14159265358979) = 144029661/45846065
rat_approx(3.141592653589793) = 325994779/103767361
rat_approx(3.1415926535897932) = 903259831/287516534
rat_approx(3.14159265358979323) = 1726375805/549522486
``````