Runge-Kutta method

func runge_kutta(yp) {
    func (t, y, δt) {
        var a = (δt * yp(t, y))
        var b = (δt * yp(t + δt/2, y + a/2))
        var c = (δt * yp(t + δt/2, y + b/2))
        var d = (δt * yp(t + δt, y + c));
        (a + 2*(b + c) + d) / 6
    }
}

define δt = 0.1
var δy = runge_kutta(func(t, y) { t * y.sqrt })

var(t, y) = (0, 1)
loop {
    t.is_int &&
        printf("y(%2d) = %12f ± %e\n", t, y, abs(y - ((t**2 + 4)**2 / 16)))
    t <= 10 || break
    y += δy(t, y, δt)
    t += δt
}

Output:

y( 0) =     1.000000 ± 0.000000e+00
y( 1) =     1.562500 ± 1.457219e-07
y( 2) =     3.999999 ± 9.194792e-07
y( 3) =    10.562497 ± 2.909562e-06
y( 4) =    24.999994 ± 6.234909e-06
y( 5) =    52.562489 ± 1.081970e-05
y( 6) =    99.999983 ± 1.659460e-05
y( 7) =   175.562476 ± 2.351773e-05
y( 8) =   288.999968 ± 3.156520e-05
y( 9) =   451.562459 ± 4.072316e-05
y(10) =   675.999949 ± 5.098329e-05