var (n, sums, ts, mc) = (100, Set(2), [], [1])
var st = Time.micro
for i in (1 ..^ n) {
for j in (mc[i-1]+1 .. Inf) {
mc[i] = j
for k in (0 .. i) {
var sum = mc[k]+j
if (sums.has(sum)) {
ts.clear
break
}
ts << sum
}
if (ts.len > 0) {
sums |= Set(ts...)
break
}
}
}
var et = (Time.micro - st)
var s = " of the Mian-Chowla sequence are:\n"
say "The first 30 terms#{s}#{mc.ft(0, 29).join(' ')}\n"
say "Terms 91 to 100#{s}#{mc.ft(90, 99).join(' ')}\n"
say "Computation time was #{et} seconds."
Output:
The first 30 terms of the Mian-Chowla sequence are:
1 2 4 8 13 21 31 45 66 81 97 123 148 182 204 252 290 361 401 475 565 593 662 775 822 916 970 1016 1159 1312
Terms 91 to 100 of the Mian-Chowla sequence are:
22526 23291 23564 23881 24596 24768 25631 26037 26255 27219
Computation time was 3.41664 seconds.