Bernoulli numbers
Built-in:
say bernoulli(42).as_frac #=> 1520097643918070802691/1806
Recursive solution (with auto-memoization):
func bernoulli_number(n) is cached {
n.is_one && return 1/2
n.is_odd && return 0
1 - sum(^n, {|k|
binomial(n,k) * __FUNC__(k) / (n - k + 1)
})
}
for n in (0..60) {
var Bn = bernoulli_number(n) || next
printf("B(%2d) = %44s / %s\n", n, Bn.nude)
}
Using Ramanujan's congruences (pretty fast):
func ramanujan_bernoulli_number(n) is cached {
return 1/2 if n.is_one
return 0 if n.is_odd
((n%6 == 4 ? -1/2 : 1) * (n+3)/3 - sum(1 .. (n - n%6)/6, {|k|
binomial(n+3, n - 6*k) * __FUNC__(n - 6*k)
})) / binomial(n+3, n)
}
Using Euler's product formula for the Riemann zeta function and the Von Staudt–Clausen theorem (very fast):
func bernoulli_number_from_zeta(n) {
n.is_zero && return 1
n.is_one && return 1/2
n.is_odd && return 0
var log2B = (log(4*Num.tau*n)/2 + n*log(n) - n*log(Num.tau) - n)/log(2)
local Num!PREC = *(int(n + log2B) + (n <= 90 ? 18 : 0))
var K = 2*(n! / Num.tau**n)
var d = n.divisors.grep {|k| is_prime(k+1) }.prod {|k| k+1 }
var z = ceil((K*d).root(n-1)).primes.prod {|p| 1 - p.float**(-n) }
(-1)**(n/2 + 1) * int(ceil(d*K / z)) / d
}
The Akiyama–Tanigawa algorithm:
func bernoulli_print {
var a = []
for m in (0..60) {
a << 1/(m+1)
for j in (1..m -> flip) {
(a[j-1] -= a[j]) *= j
}
a[0] || next
printf("B(%2d) = %44s / %s\n", m, a[0].nude)
}
}
bernoulli_print()
Output:
B( 0) = 1 / 1
B( 1) = 1 / 2
B( 2) = 1 / 6
B( 4) = -1 / 30
B( 6) = 1 / 42
B( 8) = -1 / 30
B(10) = 5 / 66
B(12) = -691 / 2730
B(14) = 7 / 6
B(16) = -3617 / 510
B(18) = 43867 / 798
B(20) = -174611 / 330
B(22) = 854513 / 138
B(24) = -236364091 / 2730
B(26) = 8553103 / 6
B(28) = -23749461029 / 870
B(30) = 8615841276005 / 14322
B(32) = -7709321041217 / 510
B(34) = 2577687858367 / 6
B(36) = -26315271553053477373 / 1919190
B(38) = 2929993913841559 / 6
B(40) = -261082718496449122051 / 13530
B(42) = 1520097643918070802691 / 1806
B(44) = -27833269579301024235023 / 690
B(46) = 596451111593912163277961 / 282
B(48) = -5609403368997817686249127547 / 46410
B(50) = 495057205241079648212477525 / 66
B(52) = -801165718135489957347924991853 / 1590
B(54) = 29149963634884862421418123812691 / 798
B(56) = -2479392929313226753685415739663229 / 870
B(58) = 84483613348880041862046775994036021 / 354
B(60) = -1215233140483755572040304994079820246041491 / 56786730