Minimum positive multiple in base 10 using only 0 and 1
Based on the Sage code by Eric M. Schmidt, which in turn is based on C code by Rick Heylen.
func find_B10(n, b=10) {
return 0 if (n == 0)
var P = n.of(-1)
for (var m = 0; P[0] == -1; ++m) {
for r in (0..n) {
next if (P[r] == -1)
next if (P[r] == m)
with ((powmod(b, m, n) + r) % n) { |t|
P[t] = m if (P[t] == -1)
}
}
}
var R = 0
var r = 0
do {
R += b**P[r]
r = (r - powmod(b, P[r], n))%n
} while (r > 0)
return R
}
printf("%5s: %28s %s\n", 'Number', 'B10', 'Multiplier')
for n in (1..10, 95..105, 297, 576, 594, 891, 909, 999, 1998, 2079, 2251, 2277, 2439, 2997, 4878) {
printf("%6d: %28s %s\n", n, var a = find_B10(n), a/n)
}
Output:
Number: B10 Multiplier
1: 1 1
2: 10 5
3: 111 37
4: 100 25
5: 10 2
6: 1110 185
7: 1001 143
8: 1000 125
9: 111111111 12345679
10: 10 1
95: 110010 1158
96: 11100000 115625
97: 11100001 114433
98: 11000010 112245
99: 111111111111111111 1122334455667789
100: 100 1
101: 101 1
102: 1000110 9805
103: 11100001 107767
104: 1001000 9625
105: 101010 962
297: 1111011111111111111 3740778151889263
576: 111111111000000 192901234375
594: 11110111111111111110 18703890759446315
891: 1111111111111111011 1247038284075321
909: 1011111111111111111 1112333455567779
999: 111111111111111111111111111 111222333444555666777889
1998: 1111111111111111111111111110 556111667222778333889445
2079: 1001101101111111111111 481530111164555609
2251: 101101101111 44913861
2277: 11110111111111111011 4879275850290343
2439: 10000101011110111101111111 4100082415379299344449
2997: 1111110111111111111111111111 370740777814851888925963
4878: 100001010111101111011111110 20500412076896496722245