Gamma function
var a = [ 1.00000_00000_00000_00000, 0.57721_56649_01532_86061, -0.65587_80715_20253_88108,
-0.04200_26350_34095_23553, 0.16653_86113_82291_48950, -0.04219_77345_55544_33675,
-0.00962_19715_27876_97356, 0.00721_89432_46663_09954, -0.00116_51675_91859_06511,
-0.00021_52416_74114_95097, 0.00012_80502_82388_11619, -0.00002_01348_54780_78824,
-0.00000_12504_93482_14267, 0.00000_11330_27231_98170, -0.00000_02056_33841_69776,
0.00000_00061_16095_10448, 0.00000_00050_02007_64447, -0.00000_00011_81274_57049,
0.00000_00001_04342_67117, 0.00000_00000_07782_26344, -0.00000_00000_03696_80562,
0.00000_00000_00510_03703, -0.00000_00000_00020_58326, -0.00000_00000_00005_34812,
0.00000_00000_00001_22678, -0.00000_00000_00000_11813, 0.00000_00000_00000_00119,
0.00000_00000_00000_00141, -0.00000_00000_00000_00023, 0.00000_00000_00000_00002 ]
func gamma(x) {
var y = (x - 1)
1 / a.reverse.reduce {|sum, an| sum*y + an}
}
for i in 1..10 {
say ("%.14e" % gamma(i/3))
}
Output:
2.67893853470775e+00
1.35411793942640e+00
1.00000000000000e+00
8.92979511569249e-01
9.02745292950934e-01
1.00000000000000e+00
1.19063934875900e+00
1.50457548825154e+00
1.99999999999397e+00
2.77815847933858e+00
Lanczos approximation:
func gamma(z) {
var epsilon = 0.0000001
func withinepsilon(x) {
abs(x - abs(x)) <= epsilon
}
var p = [
676.5203681218851, -1259.1392167224028,
771.32342877765313, -176.61502916214059,
12.507343278686905, -0.13857109526572012,
9.9843695780195716e-6, 1.5056327351493116e-7,
]
var result = 0
const pi = Num.pi
if (z.re < 0.5) {
result = (pi / (sin(pi * z) * gamma(1 - z)))
}
else {
z -= 1
var x = 0.99999999999980993
p.each_kv { |i, v|
x += v/(z + i + 1)
}
var t = (z + p.len - 0.5)
result = (sqrt(pi*2) * t**(z+0.5) * exp(-t) * x)
}
withinepsilon(result.im) ? result.re : result
}
for i in 1..10 {
say ("%.14e" % gamma(i/3))
}
Output:
2.67893853470774e+00
1.35411793942640e+00
1.00000000000000e+00
8.92979511569252e-01
9.02745292950931e-01
1.00000000000000e+00
1.19063934875900e+00
1.50457548825155e+00
2.00000000000000e+00
2.77815848043767e+00
A simpler implementation:
define ℯ = Num.e
define τ = Num.tau
func Γ(t) {
t < 20 ? (__FUNC__(t + 1) / t)
: (sqrt(τ*t) * pow(t/ℯ + 1/(12*ℯ*t), t) / t)
}
for i in (1..10) {
say ("%.14e" % Γ(i/3))
}
Output:
2.67893831294932e+00
1.35411783267848e+00
9.99999913007168e-01
8.92979437649773e-01
9.02745221785653e-01
9.99999913007168e-01
1.19063925019970e+00
1.50457536964275e+00
1.99999982601434e+00
2.77815825046596e+00