Extreme floating point values
NaN and Inf literals can be used to represent the Not-a-Number and Infinity values, which are returned in special cases, such as 0/0 and 1/0. However, one thing to notice, is that in Sidef there is no distinction between 0.0 and -0.0 and can't be differentiated from each other.
var inf = 1/0 # same as: Inf
var nan = 0/0 # same as: NaN
var exprs = [
"1.0 / 0.0", "-1.0 / 0.0", "0.0 / 0.0", "- 0.0",
"inf + 1", "5 - inf", "inf * 5", "inf / 5", "inf * 0",
"1.0 / inf", "-1.0 / inf", "inf + inf", "inf - inf",
"inf * inf", "inf / inf", "inf * 0.0", " 0 < inf", "inf == inf",
"nan + 1", "nan * 5", "nan - nan", "nan * inf", "- nan",
"nan == nan", "nan > 0", "nan < 0", "nan == 0", "0.0 == -0.0",
]
exprs.each { |expr|
"%15s => %s\n".printf(expr, eval(expr))
}
say "-"*40
say("NaN equality: ", NaN == nan)
say("Infinity equality: ", Inf == inf)
say("-Infinity equality: ", -Inf == -inf)
say "-"*40
say("sqrt(-1) = ", sqrt(-1))
say("tanh(-Inf) = ", tanh(-inf))
say("(-Inf)**2 = ", (-inf)**2)
say("(-Inf)**3 = ", (-inf)**3)
say("acos(Inf) = ", acos(inf))
say("atan(Inf) = ", atan(inf))
say("log(-1) = ", log(-1))
say("atanh(Inf) = ", atanh(inf))
Output:
1.0 / 0.0 => Inf
-1.0 / 0.0 => -Inf
0.0 / 0.0 => NaN
- 0.0 => 0
inf + 1 => Inf
5 - inf => -Inf
inf * 5 => Inf
inf / 5 => Inf
inf * 0 => NaN
1.0 / inf => 0
-1.0 / inf => 0
inf + inf => Inf
inf - inf => NaN
inf * inf => Inf
inf / inf => NaN
inf * 0.0 => NaN
0 < inf => true
inf == inf => true
nan + 1 => NaN
nan * 5 => NaN
nan - nan => NaN
nan * inf => NaN
- nan => NaN
nan == nan => false
nan > 0 =>
nan < 0 =>
nan == 0 => false
0.0 == -0.0 => true
----------------------------------------
NaN equality: false
Infinity equality: true
-Infinity equality: true
----------------------------------------
sqrt(-1) = i
tanh(-Inf) = -1
(-Inf)**2 = Inf
(-Inf)**3 = -Inf
acos(Inf) = -Infi
atan(Inf) = 1.57079632679489661923132169163975144209858469969
log(-1) = 3.14159265358979323846264338327950288419716939938i
atanh(Inf) = 1.57079632679489661923132169163975144209858469969i