Determine if two triangles overlap

First, check if any vertex is inside each other triangle (that should cover most overlapping cases including enclosures). Then see if an edge of triangle A intersects any of two edges of B (for shapes like Star of David 1)

#!/usr/bin/env perl6

# Reference:
# https://stackoverflow.com/questions/2049582/how-to-determine-if-a-point-is-in-a-2d-triangle
# https://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/

use v6;

sub if-overlap ($triangle-pair) {
   my (\A,\B) = $triangle-pair;
   my Bool $result = False;

   sub sign (\T) {
      return (T.[0][0] - T[2][0]) * (T[1][1] - T[2][1]) -
         (T[1][0] - T[2][0]) * (T[0][1] - T[2][1]);
   }

   sub point-in-triangle (\pt, \Y --> Bool) {
      my ($d1, $d2, $d3);
      my Bool ($has_neg, $has_pos);

      $d1 = sign (pt, Y.[0], Y.[1]);
      $d2 = sign (pt, Y.[1], Y.[2]);
      $d3 = sign (pt, Y.[2], Y.[0]);

      $has_neg = ($d1 < 0) || ($d2 < 0) || ($d3 < 0);
      $has_pos = ($d1 > 0) || ($d2 > 0) || ($d3 > 0);

      return !($has_neg && $has_pos);
   }

   sub orientation(\P, \Q, \R --> Int) {
      my \val = (Q.[1] - P.[1]) * (R.[0] - Q.[0]) -
         (Q.[0] - P.[0]) * (R.[1] - Q.[1]);

      return 0 if val == 0;  # colinear

      return (val > 0) ?? 1 !! 2; # clock or counterclock wise
   }

   sub onSegment(\P, \Q, \R --> Bool) {
      Q.[0] <= max(P.[0], R.[0]) && Q.[0] >= min(P.[0], R.[0]) &&
         Q.[1] <= max(P.[1], R.[1]) && Q.[1] >= min(P.[0], R.[1])
         ?? True !! False;
   }

   sub intersect(\A,\B,\C,\D --> Bool) {
      my \o1 = orientation A,C,D;
      my \o2 = orientation B,C,D;
      my \o3 = orientation A,B,C;
      my \o4 = orientation A,B,D;

      return True if o1 != o2 && o3 != o4;

      return True if (o1 == 0 && onSegment(A, C, D)) ;
      return True if (o2 == 0 && onSegment(B, C, D)) ;
      return True if (o3 == 0 && onSegment(A, B, C)) ;
      return True if (o4 == 0 && onSegment(A, B, D)) ;

      return False;
   }

   for ^3 {
      {$result = True; last } if point-in-triangle A.[$^i] , B or
          point-in-triangle B.[$^i] , A ;
   }

   unless $result {
      $result = True if intersect A.[0], A.[1], B.[0], B.[1] or
          intersect A.[0], A.[1], B.[0], B.[2]
   }

   say A, " and ", B, " do",  $result ?? "" !! " NOT" , " overlap.";
}

my \DATA = [
   [ [(0,0),(5,0),(0,5)]   ,  [(0,0),(5,0),(0,6)]     ],
   [ [(0,0),(0,5),(5,0)]   ,  [(0,0),(0,5),(5,0)]     ],
   [ [(0,0),(5,0),(0,5)]   ,  [(-10,0),(-5,0),(-1,6)] ],
   [ [(0,0),(5,0),(2.5,5)] ,  [ (0,4),(2.5,-1),(5,4)] ],
   [ [(0,0),(1,1),(0,2)]   ,  [(2,1),(3,0),(3,2)]     ],
   [ [(0,0),(1,1),(0,2)]   ,  [(2,1),(3,-2),(3,4)]    ],
   [ [(0,0),(1,0),(0,1)]   ,  [(1,0),(2,0),(1,1)]     ]
];

if-overlap $_ for DATA ;

Output:

[(0 0) (5 0) (0 5)] and [(0 0) (5 0) (0 6)] do overlap.</dt></dl>
<p>[(0 0) (0 5) (5 0)] and [(0 0) (0 5) (5 0)] do overlap.
[(0 0) (5 0) (0 5)] and [(-10 0) (-5 0) (-1 6)] do NOT overlap.
[(0 0) (5 0) (2.5 5)] and [(0 4) (2.5 -1) (5 4)] do overlap.
[(0 0) (1 1) (0 2)] and [(2 1) (3 0) (3 2)] do NOT overlap.
[(0 0) (1 1) (0 2)] and [(2 1) (3 -2) (3 4)] do NOT overlap.
[(0 0) (1 0) (0 1)] and [(1 0) (2 0) (1 1)] do overlap.
</p>