Knapsack problem/Unbounded
Brute force, looked a lot at the Ruby solution.
class KnapsackItem {
has $.volume;
has $.weight;
has $.value;
has $.name;
method new($volume,$weight,$value,$name) {
self.bless(:$volume, :$weight, :$value, :$name)
}
};
my KnapsackItem $panacea .= new: 0.025, 0.3, 3000, "panacea";
my KnapsackItem $ichor .= new: 0.015, 0.2, 1800, "ichor";
my KnapsackItem $gold .= new: 0.002, 2.0, 2500, "gold";
my KnapsackItem $maximum .= new: 0.25, 25, 0 , "max";
my $max_val = 0;
my @solutions;
my %max_items;
for $panacea, $ichor, $gold -> $item {
%max_items{$item.name} = floor [min]
$maximum.volume / $item.volume,
$maximum.weight / $item.weight;
}
for 0..%max_items<panacea>
X 0..%max_items<ichor>
X 0..%max_items<gold>
-> ($p, $i, $g)
{
next if $panacea.volume * $p + $ichor.volume * $i + $gold.volume * $g > $maximum.volume;
next if $panacea.weight * $p + $ichor.weight * $i + $gold.weight * $g > $maximum.weight;
given $panacea.value * $p + $ichor.value * $i + $gold.value * $g {
if $_ > $max_val { $max_val = $_; @solutions = (); }
when $max_val { @solutions.push: $[$p,$i,$g] }
}
}
say "maximum value is $max_val\npossible solutions:";
say "panacea\tichor\tgold";
.join("\t").say for @solutions;
Output:
Output:
maximum value is 54500
possible solutions:
panacea ichor gold
0 15 11
3 10 11
6 5 11
9 0 11