class Quaternion {
has Real ( $.r, $.i, $.j, $.k );
multi method new ( Real $r, Real $i, Real $j, Real $k ) {
self.bless: :$r, :$i, :$j, :$k;
}
multi qu(*@r) is export { Quaternion.new: |@r }
sub postfix:<j>(Real $x) is export { qu 0, 0, $x, 0 }
sub postfix:<k>(Real $x) is export { qu 0, 0, 0, $x }
method Str () { "$.r + {$.i}i + {$.j}j + {$.k}k" }
method reals () { $.r, $.i, $.j, $.k }
method conj () { qu $.r, -$.i, -$.j, -$.k }
method norm () { sqrt [+] self.reals X** 2 }
multi infix:<eqv> ( Quaternion $a, Quaternion $b ) is export { $a.reals eqv $b.reals }
multi infix:<+> ( Quaternion $a, Real $b ) is export { qu $b+$a.r, $a.i, $a.j, $a.k }
multi infix:<+> ( Real $a, Quaternion $b ) is export { qu $a+$b.r, $b.i, $b.j, $b.k }
multi infix:<+> ( Quaternion $a, Complex $b ) is export { qu $b.re + $a.r, $b.im + $a.i, $a.j, $a.k }
multi infix:<+> ( Complex $a, Quaternion $b ) is export { qu $a.re + $b.r, $a.im + $b.i, $b.j, $b.k }
multi infix:<+> ( Quaternion $a, Quaternion $b ) is export { qu $a.reals Z+ $b.reals }
multi prefix:<-> ( Quaternion $a ) is export { qu $a.reals X* -1 }
multi infix:<*> ( Quaternion $a, Real $b ) is export { qu $a.reals X* $b }
multi infix:<*> ( Real $a, Quaternion $b ) is export { qu $b.reals X* $a }
multi infix:<*> ( Quaternion $a, Complex $b ) is export { $a * qu $b.reals, 0, 0 }
multi infix:<*> ( Complex $a, Quaternion $b ) is export { $b R* qu $a.reals, 0, 0 }
multi infix:<*> ( Quaternion $a, Quaternion $b ) is export {
my @a_rijk = $a.reals;
my ( $r, $i, $j, $k ) = $b.reals;
return qu [+]( @a_rijk Z* $r, -$i, -$j, -$k ),
[+]( @a_rijk Z* $i, $r, $k, -$j ),
[+]( @a_rijk Z* $j, -$k, $r, $i ),
[+]( @a_rijk Z* $k, $j, -$i, $r );
}
}
import Quaternion;
my $q = 1 + 2i + 3j + 4k;
my $q1 = 2 + 3i + 4j + 5k;
my $q2 = 3 + 4i + 5j + 6k;
my $r = 7;
say "1) q norm = {$q.norm}";
say "2) -q = {-$q}";
say "3) q conj = {$q.conj}";
say "4) q + r = {$q + $r}";
say "5) q1 + q2 = {$q1 + $q2}";
say "6) q * r = {$q * $r}";
say "7) q1 * q2 = {$q1 * $q2}";
say "8) q1q2 { $q1 * $q2 eqv $q2 * $q1 ?? '==' !! '!=' } q2q1";
Output:
1) q norm = 5.47722557505166
2) -q = -1 + -2i + -3j + -4k
3) q conj = 1 + -2i + -3j + -4k
4) q + r = 8 + 2i + 3j + 4k
5) q1 + q2 = 5 + 7i + 9j + 11k
6) q * r = 7 + 14i + 21j + 28k
7) q1 * q2 = -56 + 16i + 24j + 26k
8) q1q2 != q2q1