Longest increasing subsequence
Dynamic programming
Straight-forward implementation of the algorithm described in the video.
sub lis(@d) {
my @l = [].item xx @d;
@l[0].push: @d[0];
for 1 ..^ @d -> $i {
for ^$i -> $j {
if @d[$j] < @d[$i] && @l[$i] < @l[$j] + 1 {
@l[$i] = [ @l[$j][] ]
}
}
@l[$i].push: @d[$i];
}
return max :by(*.elems), @l;
}
say lis([3,2,6,4,5,1]);
say lis([0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]);
Output:
[2 4 5]
[0 2 6 9 11 15]
Patience sorting
sub lis(@deck is copy) {
my @S = [@deck.shift() => Nil].item;
for @deck -> $card {
with first { @S[$_][*-1].key > $card }, ^@S -> $i {
@S[$i].push: $card => @S[$i-1][*-1] // Nil
} else {
@S.push: [ $card => @S[*-1][*-1] // Nil ].item
}
}
reverse map *.key, (
@S[*-1][*-1], *.value ...^ !*.defined
)
}
say lis <3 2 6 4 5 1>;
say lis <0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15>;
Output:
[2 4 5]
[0 2 6 9 11 15]